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Abstract: Agosterol A (1) has been isolate
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siruciure elucidaied. Agosierol A (1) is a no 'ei poi“h‘ydro‘ 3 iat‘d sterol a"etate, which compleiely reverses
multidrug resistance in human carcinoma cells caused by overexpression of two kinds of membrane glycoprotein
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successful cancer chemotherapy. Overexpression of membrane giycoprotein [1,2] (e.g., P-

glycoprotein: P-gp) has been observed in MDR tumor cell lines and P-gp is believed to
function as an energy-dependent efflux pump. So, a substance which inhibits the action of
those membrane glycoproteins would have high possibility for solving the MDR problems in
cancer chemotherapy. In the course of our study of bioactive substances from marine
organisms, [3,4] we focused on a search for reversing substances of MDR in tumor cells and
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isolated a novel polyhydroxylated sterol acetate named agosterol A (1) from a marine sponge
of Sponoia Thic naner deccrihec the elncidation of the ahgalnte cterenctructure of
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agosterol A

An acetone exiract of the titled frozen sponge (20 kg collecied in july at Ago Bay, Mie
Prefecture) was partitioned into a water-AcOEt mixture to provide the AcOEt soluble
portion (172 g). The AcOEt soluble portion showed strong growth inhibition at 10 pg/ml
concentration against P-gp overexpressing MDR tumor cells (KB-C2) [5] in the presence of
0.1 pg/ml of colchicine, while it exhibited little cytotoxicity against parental KB-3-1 cells at
10 pg/ml. This fraction was subjected to bioassay-guided separation (growth inhibition assay
against KB-C2 in the presence of colchicine). Repeated SiO2 column chromatograph_y (n-
exane-AcOEt) of the afforded the a
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separated by HPLC (Cosmosil 5SL, Et20; mightysil RP-18 GP, MeOH:H>0=5:1) to provide
agnctarn]l A (1) /1Q1 mo) /1 2 O viald feam tha A~NES aaliihla nartian)
ARUDLCIUL £y (&) (71 dlig) (1.0 70 yitil 1iUi ulc ACULEL SU1UoIC poiaiii)
A nnotarnl A (1Y wvurno nhtninad ng a nnlarlace armmarmbhariie onlide Tl 1 A7 (e Y 1 RAAMLIY
nDpRpuUdILivL (1) ad Uu ITU ad a VULULICDD HULPHUUD DULIUL. W) T 4L 7.0 (C— U.1, IVICUIY ).

The IR spectrum of 1 showed the strong absorption bands due to ester (1746 cm-1) and
hydroxyl (3461 cm-1) groups. The FAB MS of 1 showed a quasimolecular (M+Na)+ ion
peak at m/z 599 and the molecular formula was determined as C33Hs208 by HR-FAB MS in
conjunction with NMR analysis. The 1H- and 13C-NMR data of 1 indicated the presence of
three secondary methyls, two tertiary methyls, an olefinic proton, and five oxymethine

protons together with three acetyl groups. Acetylation of 1 (Ac20/pyridine, r.t.) furnished
the pentaacetate [6]. The COSY spectrum of 1 revealed the presence of three partial
structures (fragment A: C-1 to C-7, fragment B: C-9, C-11 and C-12, fragment C: C- 14 to

C-27) as shown in Fig. 1. The presence of these partial st
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basis of the following HMBC correlations: 1) adjacency of fragments A and B through C-8
and C-10: cross peaks between H-1, H-5, H3-19 and C-10; H-5, H-7 and C-9; H-9 and C-8;
2) adjacency of fragments B and C through C-8 and C-13: cross peaks between H-12 and C-
13, C-14, C-17; Ha-15, Ha-16, H3-18 and C-13. These adjacencies were also supported by
allylic couplings between H-7 and H-9, H-14. The connectivities of three acetoxyl moieties
were also clarified by the HMBC correlations between each acetylmethyl proton and C-3, C-
4, and C-6, respectively. Based on the accumulated evidence, the planar structure of

agosterol A has been elucidated as 1 (Fig. 1).
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Next, we tried to elucidate the absolute stereostructure of agosterol A (1). As shown in
Fig. 2, the relative stereostructure of the ring part in 1 was elaborated on the basis of the
ROESY correlations and the 3/ygy couplings. Furthermore, in order to elucidate the



6305

absolute configurations at C-11 and C-22 in 1, we applied modified Mosher's method [7].
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(MTPA), dicyclohexylcarbodiimide, and N,N-dimethylaminopyridine in CH2Cl to furnish
.y I'\
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tne 22-U-K-(+)-M1FPA ester .48 11 22-0 {+) MTPA ester 38 22-0-5- (-)-MIFA €Si€r

2b, and 11,22-0-5-(-)-MTPA ester 3b, respectively. All proton signals of 2a, 2b, 3a, and

3b were assigned and the absolute configurations at both C-11 and C-22 were determined as
R by the analysis of Ad values (Fig. 3).
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2b H (S )-MTPA
Fig. 2 The ROESY correlations in 1 3a (R)-MTPA (R)-MTPA
3b (S)-MTPA (S)-MTPA
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which was caused by asymmetric 22-ketocarbonyl, the same as an authentic (205)-22-
ketocholesterol (Ae —0.73 at 287.5 nm), and the absolute configuration at C-20 was
determined as S. This result was also supported by IH- and 13C-NMR comparison of the side
chain part between 1 and (20S,22R)-22-hydroxy-cholesterol [8]. Consequently, the absolute
stereostructure of agosterol A has been confirmed to be 1.
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Table 1 IH- and 13C-NMR Data for Agosterol A (1). (500 MHz in CDCI3 )

No. 'C 8¢ 'H 8 (mult., J (Hz)) HMBC (:3C)» No. 13C &c H & (muit,, J (Hz)) HMBC (3¢
I 386@) 2.57 (d-like, 14.0), 1.42 (m) 2, 10, 19 18 128(q)  0.57(s) 12, 13, 17

2 224(t)  1.92 (m), 1.64 (m) 1,3 19 155(q) 124 (s) 1,59, 10

3 7i9(d) 4.80(di, i2.6,3.3) 2,4,C=0(3-Ac) 20 42.4 (d) 1.67 (m)

4 66.8(d)  5.48 (br.s) 2,3,5,C=0(4-Ac) 21 12.6 (q) 0.95(d, 6.7) 17, 20, 22

5 47.8 (d) 1.74 (d-like, 10.5) 9, 10, 19 22 73.7(d) 3.60 (d-like, 10.2)

6 67.3(d) 5.33(d, 10.5) 7 23 27.7 () 1.37 (m), 1.27 (m)

7 1209(d) 5.17 (brs) 9, 14 24 36.0 (1) 1.42 (m), 1.17 (m) 22

8 139.1(s) - 25 28.1(d)  1.54 (m) 24, 26, 27

§ 576(d) 1.80(m) 8, i1 26 229(q) 0.90 (d, 6.7) 27

10 36.5(s) - 27 22.5(q) 0.91(d. 6.7) 24, 25, 26

11 69.0(d) 3.98 (ddd, 10.4, 10.4, 4.5) 9, 10, 12 3-Ac 21.0(q) 1.98 (s) 3, C=0 (3-Ac)
12 508 () 2.33 (dd, 12.2, 4.5), 1.37 (m) 11, 13, 18 170.3 (s) -

13 435(s) - 4Ac  209(q)  2.08(s) 4, C=0 (4-Ac)
14 544 (d) 1.92 (m) 13 170.3 (s) -

15 227 1.57 (m), .44 (m) i3 6-Ac 2i.2(q) 2.04 (s) 6, C=0 (6-Ac)
16 27.0()  1.82 (m), 1.40 (m) 13 1712(¢6) -

17 528(d) 1.28 (m) 18

a) C coupied with H.

Agosterol A (1) completely reversed the resistance to colchicine in KB-C2 cells at 3 pg/ml
and also the resistance to vincristine in KB-CV60 cells [9], which overexpress multidrug
resistance-associated protein (MRP), at | pg/ml (The details will be reported elsewhere). So
far, there are few agents [10,11] which reverse MDR caused by overexpression of MRP.
Agosterol A (1) may be a pharmaceutical candidate for reversing MDR and also may be
useful for detailed explication of the molecular mechanism of MRP.
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